738 research outputs found

    Advanced Cloud Privacy Threat Modeling

    Full text link
    Privacy-preservation for sensitive data has become a challenging issue in cloud computing. Threat modeling as a part of requirements engineering in secure software development provides a structured approach for identifying attacks and proposing countermeasures against the exploitation of vulnerabilities in a system . This paper describes an extension of Cloud Privacy Threat Modeling (CPTM) methodology for privacy threat modeling in relation to processing sensitive data in cloud computing environments. It describes the modeling methodology that involved applying Method Engineering to specify characteristics of a cloud privacy threat modeling methodology, different steps in the proposed methodology and corresponding products. We believe that the extended methodology facilitates the application of a privacy-preserving cloud software development approach from requirements engineering to design

    Network Coherence Time Matters - Aligned Image Sets and the Degrees of Freedom of Interference Networks with Finite Precision CSIT and Perfect CSIR

    Full text link
    This work obtains the first bound that is provably sensitive to network coherence time, i.e., coherence time in an interference network where all channels experience the same coherence patterns. This is accomplished by a novel adaptation of the aligned image sets bound, and settles various open problems noted previously by Naderi and Avestimehr and by Gou et al. For example, a necessary and sufficient condition is obtained for the optimality of 1/2 DoF per user in a partially connected interference network where the channel state information at the receivers (CSIR) is perfect, the channel state information at the transmitters (CSIT) is instantaneous but limited to finite precision, and the network coherence time is T_c= 1. The surprising insight that emerges is that even with perfect CSIR and instantaneous finite precision CSIT, network coherence time matters, i.e., it has a DoF impact.Comment: 19 pages, 4 figure

    Full Waveform Inversion and Lagrange Multipliers

    Full text link
    Full-waveform inversion (FWI) is an effective method for imaging subsurface properties using sparsely recorded data. It involves solving a wave propagation problem to estimate model parameters that accurately reproduce the data. Recent trends in FWI have led to the development of extended methodologies, among which source extension methods leveraging reconstructed wavefields to solve penalty or augmented Lagrangian (AL) formulations have emerged as robust algorithms, even for inaccurate initial models. Despite their demonstrated robustness, challenges remain, such as the lack of a clear physical interpretation, difficulty in comparison, and reliance on difficult-to-compute least squares (LS) wavefields. This paper is divided into two critical parts. In the first, a novel formulation of these methods is explored within a unified Lagrangian framework. This novel perspective permits the introduction of alternative algorithms that employ LS multipliers instead of wavefields. These multiplier-oriented variants appear as regularizations of the standard FWI, are adaptable to the time domain, offer tangible physical interpretations, and foster enhanced convergence efficiency. The second part of the paper delves into understanding the underlying mechanisms of these techniques. This is achieved by solving the FWI equations using iterative linearization and inverse scattering methods. The paper provides insight into the role and significance of Lagrange multipliers in enhancing the linearization of FWI equations. It explains how different methods estimate multipliers or make approximations to increase computing efficiency. Additionally, it presents a new physical understanding of the Lagrange multiplier used in the AL method, highlighting how important it is for improving algorithm performance when compared to penalty methods
    • …
    corecore